LDPE Technology

2010

Előadó: Csernyik István
Content

- What is LDPE
- Application
- History
- Process theory
- Autoclave process
- Tubular process
- Process steps
- Process control
- Process safety
- Key equipment
- Investment cost
- Cost of production
What is LDPE

- **Low Density PolyEthylene**
- **Typical properties**
 - Density 0,915-0,935
 - Melt index 0,3-20 g/10 min (190 C/2,16 kg)
 - Melting point 120 C
 - Polydispersity 5,5 – 6 (TVK tubular grades)
Application

- Film 65%
- Extrusion coating 10%
- Injection moulding 7%
- Blow moulding 4%
- Other 14%
Application by Properties

- Extrusion Coating
- Injection Moulding
- Film Extrusion
- Blow Moulding

MI, g/10 min/190°C

Density, kg/dm³
History

- LDPE was discovered by ICI in 1933 → autoclave process in 1938
- BASF developed the first tubular process during WW II
- High variation of autoclave and tubular processes by different licensors
- Nowadays licences available up to 400 kt/y plant capacity
- Global consumption in 2009: 18 million t
- TVK LDPE plants
 - 1970 - ICI autoclave process 24 kt/y – debottlenecked to 50 kt/y
 - 1991 - BASF tubular process 60 kt/y
Process Theory 1

- **Free radical reaction**
 - **Initiation**
 \[I \rightarrow R^\cdot + R^\cdot \]
 Initiators: typically organic peroxides
 - **Propagation**
 \[R^\cdot + CH_2CH_2 \rightarrow RCH_2CH_2^\cdot \]
 \[R(CH_2CH_2)_{n-1}CH_2CH_2^\cdot + CH_2CH_2 \rightarrow R(CH_2CH_2)_nCH_2CH_2^\cdot \]
 - **Termination**
 - **Combination**
 \[R_x^\cdot + R_y^\cdot \rightarrow P_{x+y} \]
 - **Disproportioning**
 \[R_x^\cdot + R_y^\cdot \rightarrow P_x + P_y \]
Process Theory 2

- Other reactions
 - Chain transfer - important to control molecular weight
 \[R_x \cdot + \text{CH}_2\text{CH}_2 \rightarrow P_x + R_1 \cdot \] by monomer
 \[R_x \cdot + M \rightarrow P_x + M \cdot \] by modifier
 - Cracking - results in shorter chains
 \[R_x \cdot \rightarrow P_y + R_{x-y} \cdot \]
Process Theory 3

Branching - LDPE characterised by high degree of short and long chain branching

- **Short chain branching** – responsible for density
 Intramolecular chain transfer and copolymerisation result in short chain branches

- **Long chain branching**
 Intermolecular chain transfers give long chain branches
LDPE - Autoclave Process

1. **Initiators (Peroxides)**
2. **Autoclave reactor**
3. **Wax separator**
4. **Oil separator**
5. **HP separator**
6. **LP separator**
7. **Extruder**
8. **Degassing**
9. **Bagging Bulk loading**
10. **Secondary compressor**
11. **Primary compressor**
12. **280 bar**
13. **250 C**
14. **0.5 bar**
15. **250 C**
16. **1400 bar**
17. **Ethylene**
18. **250 bar**
19. **Autoclave reactor**

Autoclave Reactor

Autoclave reactor MK 10

L = 4750 mm d = 18”

Total 725 l

ethylene

Top Zone

2nd Zone

peroxides

3rd Zone

4th Zone

Thermocouple 1 (1st T control)
Thermocouple 2
Thermocouple 3
Thermocouple 4 (2nd T control)
Thermocouple 5
Thermocouple 6
Thermocouple 7 (control 2nd zone T)
Thermocouple 8
Thermocouple 9 (control 3rd zone T)
Thermocouple 10 (control 4th zone T)
LDPE - Tubular Process

Initiator (Oxygen)

Primary Compressor

Secondary Compressor

Preheater

Precooler

Reaction Zone I

Reaction Zone II

HP Separator

HP Recycle

LP Recycle

Purge

Fresh Ethylene

Modifier

250 bar

2400-2900 bar

180-310 C

250 bar

280 bar

250 C

0.5 bar

250 C

280 bar

250 C

Degassing

Extruder

Bagging

Bulk loading

LP Separator
Autoclave vs. Tubular Process

Autoclave
- Conversion up to 21% - adiabatic, reaction heat removed by reactant only
- 1300-2000 bar operating pressure
- Higher capacity of hyper compressor
- Organic peroxide initiators only
- Specialty polymer capability – EVA copolymers over 40% vinyl acetate
- Lower reactor capacity – 150 kt/y

Tubular
- Conversion up to 36% - reaction heat partly removed by coolant
- 2500-3200 bar operating pressure
- Lower capacity of hyper but higher load
- Cheaper oxygen initiator possible
- Film grades with higher clarity, EVA up to 10% vinyl acetate
- Reactor capacity up to 400 kt/y
Process Steps 1

- **Compression**
 - Increase make up ethylene pressure to reaction pressure
 - Recycle unreacted ethylene
 - Inject modifier and comonomer

- **Reaction**
 - Injection of initiators
 - Control temperatures for required product properties
 - One phase reaction – two phase only at lower pressure and temperature
 - Short residence time – some minutes
Process Steps 2

- **HP separator**
 - Separate melt LDPE and unreacted ethylene

- **LP separator**
 - Remove unreacted ethylene
 - Feed tank for extruder

- **HP recycle**
 - Remove low molecular weight polymer (wax)
 - Cool down recycle ethylene

- **LP recycle**
 - Remove low molecular weight polymer (wax, oils)
 - Cool down recycle ethylene
Process Steps 3

- Extrusion
 - Homogenization
 - Additive dosing
 - Pelletizing
- Degassing
 - Remove residual ethylene (generally less than 1000 ppm) from LDPE – to avoid explosive gas mixtures
Process Control

- Melt index (Molecular weight)
 - $P \uparrow$ MI \downarrow ($M_w \uparrow$)
 - $T \uparrow$ MI \uparrow ($M_w \downarrow$)
 - $[\text{Modifier}] \uparrow$ MI \uparrow ($M_w \downarrow$)

- Density
 - $P \uparrow$ D \uparrow
 - $T \uparrow$ D \downarrow

- Pressure range: 1300-3000 bar

- Temperature range: 160-310 C
Process Safety

- Risk of decomposition
 - Decomposition: ethylene or polyethylene decomp to C and H₂
 - High temperature, high pressure, contaminations favour decomposition
- Reactor and HP separator in confined area – generally behind concrete wall
- Interlock system to
 - avoid decomposition and
 - protect equipment
- Special metal gaskets at high pressures
- Gas detectors
- Fire fighting system
Key Equipment

- **Compressors**
 - Primary compressor (Booster+Primary)
 - 5 stages
 - 0.1 bar suction; 250 bar discharge
 - Secondary compressor (Hyper)
 - Two stages
 - 250 bar suction; 3000 bar discharge

- **Extruder**
 - Hot melt extruder for homogenization
Hyper Compressor Arrangement

Latest technologies – for best performance
- High pressure packing cups
- Low pressure packing
- Bearings
- High pressure packing
- Oil seals

In-house engineered and manufactured key components – for reliability
- Crosshead frame
- Auxiliary guide
- Burckhardt HyproPack™ – Cartridge system
- Elastic rod coupling
- Plunger coupling
- Central valve
- Burckhardt HyproPul™ – Integrated hydraulic cylinder
- Large cross sections of cooling/flushing piping
- Safety device
- Cylinder tie bolts

Rugged design – for durability
- Crankgear
- Crankshaft
- Distance piece

20
Hyper Compressor Cylinder
Extruder Arrangement

- MAIN MOTOR (3000 kW)
- GEAR REDUCER
- DIVERTOR VALVE
- LPS (LOW PRESS. SEPARATOR)
- GATE VALVE
- SCREEN CHANGER
- CUTTER UNIT
- TEX858-21H SIDE ARM
Single-screw Extruder
Investment cost
Basis: USGC 2008Q1

<table>
<thead>
<tr>
<th>Process</th>
<th>Autoclave 135 kt</th>
<th>Autoclave 3x135 kt</th>
<th>Tubular 400 kt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISBL</td>
<td>91,7</td>
<td>231,6</td>
<td>130,1</td>
</tr>
<tr>
<td>OSBL</td>
<td>60,6</td>
<td>142,3</td>
<td>118,4</td>
</tr>
<tr>
<td>Other project cost</td>
<td>61,2</td>
<td>160,5</td>
<td>125,1</td>
</tr>
<tr>
<td>Total investment</td>
<td>213,5</td>
<td>534,4</td>
<td>373,6</td>
</tr>
</tbody>
</table>

Specific investment, USD/t

<table>
<thead>
<tr>
<th>Autoclave 135 kt</th>
<th>Autoclave 3x135 kt</th>
<th>Tubular 400 kt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1581</td>
<td>1320</td>
<td>934</td>
</tr>
</tbody>
</table>
Cost of Production

Basis: USGC 2008Q1

<table>
<thead>
<tr>
<th></th>
<th>Autoclave</th>
<th>Autoclave Tubular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylene</td>
<td>1354 USD/t</td>
<td>1354 USD/t</td>
</tr>
<tr>
<td>Catalysts & chemicals</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Additives</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Total raw materials</td>
<td>1376</td>
<td>1376</td>
</tr>
<tr>
<td>Power</td>
<td>51</td>
<td>51</td>
</tr>
<tr>
<td>Other utilities</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Steam credit</td>
<td>-34</td>
<td></td>
</tr>
<tr>
<td>Total utilities</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Direct cash cost</td>
<td>34</td>
<td>22</td>
</tr>
<tr>
<td>Allocated cash cost</td>
<td>37</td>
<td>27</td>
</tr>
<tr>
<td>Total fixed costs</td>
<td>71</td>
<td>49</td>
</tr>
<tr>
<td>Total cash cost</td>
<td>1507</td>
<td>1485</td>
</tr>
</tbody>
</table>

![Graph showing the cost distribution for different processes](image)

Graph Notes:
- **Total fixed costs:**
- **Total utilities:**
- **Total raw materials:**

Processes:
- 135 kt Autoclave
- 3x135 kt Autoclave
- 400 kt Tubular
Appendix: Metal Gasket

Schrauben und Sechskantmuttern nach DIN 2510

Nenndruck 360 MPa
Appendix: Hyper compressor cylinder
Appendix: Blown Film Extrusion
Appendix: Extrusion Coating