OLEFINS PRODUCTION

Olefins by steam cracking

Content

- Importance of ethylene and propylene in the chemical industry
- History
- Characteristics of steam cracking
- Raw materials and products
- Steam cracking processes, steam cracking at TVK
- Safety aspects
- Control systems
- Key equipment
- Overview of investment and operating costs

Importance of ethylene and propylene in the chemical industry

Lower olefins: ethylene and propylene

The largest volume petrochemicals produced

- Annual global production of ethylene in 2010 is about 120 million tons with a continuous annual increase of some 4 - 5 %
- Ethylene and propylene have no end use, they are building blocks for a large variety of chemicals and petrochemical products
- Polymers are the dominating end-users

Building block for petrochemicals – ethylene consumption 2009

Building block for petrochemicals – propylene consumption 2009

6

Main drivers for ethylene and propylene demand: PE and PP

Global consumption of ethylene and propylene

Hungary: ethylene produced by TVK only

History

Ethylene milestones

- 1913: Standard Oil's scientist patented thermal cracking process
- 1930ties: Ethylene was first separated from coke oven gas and the first commercial plant for the production of ethylene was built by Linde at that time
- 1941: Standard Jersey (ExxonMobil's predecessor) developed the world's first steam cracker at Baton Rouge
- 1950ties: Ethylene emerged as a large-volume intermediate, replacing acetylene as prime material for synthesis
- Today ethylene is primarily produced by thermal cracking of hydrocarbons in the presence of steam. Plant capacities are up to 1-1,5 million t/yr ethylene.
- Other processes are also available or under development

Olefin production by processes, 2008

Ethylene at TVK

- 1975: First steam cracker with Linde process started operation
 - Original nameplate capacity: 250 kt/yr ethylene
 - After several debottlenecking nowadays the actual capacity is 370 kt/yr
- 2004: Second cracker (also Linde process) with 250 kt/yr capacity was commissioned
 - Today the capacity is 290 kt/yr

Present and future processes to ethylene and propylene production

Steam cracking	dominating technology
Refinery processes	minor importance for ethylene
	important for propylene only
MTO Methanol to Ethylene and Propylene	technology is ready but
	not yet commercialized
MTP Methanol selectively to Propylene	commercialisation phase
Syngas via Fisher Tropsch	minor importance
Green Ethylene	
 Biomass via Fermentation to Ethanol and Dehydration of Ethanol 	commercialisation phase
- Biomass > Syngas > Fischer Tropsch	study phase

Characteristics of steam cracking

What is steam cracking?

- Steam cracking is a pyrolysis process
- A hydrocarbon mixture is heated in metal tubes inside a furnace in the presence of steam to a temperature at which the hydrocarbon molecules thermally decomposes
- For ethane the primary reaction is dehydrogenation C2H6 \rightarrow H2C=CH2 + H2
- Other free radical reactions also occur
 - Cracking and dehydrogenation of longer molecules resulting in hydrogen, methane, ethylene, propylene, butadiene and heavier
 - Continued dehydrogenation to form acetylene, aromatics and coke
- These reactions require a residence time of less than one second and are endothermic

Principle of the cracking process

Key words for cracking

Yield

Cracking severity

- Propylene/Ethylene ratio (used for liquid feed)
- Conversion(used for gas feeds)
- Dilution steam ratio

Residence time

Run time

Product/Feed

Depth of cracking e.g. P/E=0,45 T~ 850 C; P/E=0,60 T~ 810 C

Conversion rate of feed component e.g. 60-70 % for ethane Steam/HC feed e.g. 0,5 kg/kg for naphtha Residence time of one molecule in the cracking coil e.g. 0,1 – 0,5 sec Time between two decokings e.g. 50 – 80 days

Cracking conditions

Residence time

0,1 - 0,5 sec

Short residence time favours primary reactions where olefins are formed

2-3 bar

Long residence time favours secondary reactions where olefins are destroyed

Pressure

- High pressure favours secondary reactions
- Low pressure favours primary reactions

Dilution steam

0,3 – 0,8 kg/kg

- Reduces partial pressure of HC
- Suppresses secondary reactions
- Prevents excessive coke formation
- Heavier feedstock needs more steam

Temperature

800 – 850 C

- High temperature promotes the formation of lower olefins, low temperatures favour oligomerization
- Fast temperature rise favours ethylene and propylene
- The heavier the feed the lower the temperature coke formation!

Severity vs. product yield

Yields for naphtha feed

Raw materials and products

Wide range of feedstocks

Gaseous feeds

- Ethane
- Propane
- N-butane/i-butane
- Liquid feeds
 - Condensates from natural gas
 - Naphtha
 - Atmospheric gas oil (AGO)
 - Hydrocracker residue (HCR), hydrogenated vacuum gas oil (HVGO)

Liquid feeds

Main components

- Paraffins
- Naphthenes
- Olefins and aromatics (associated components in heavy feedstocks)

Cracked gas composition vs. feedstock

wt %

	Ethane	Propane	n-c4/i-c4	Naphtha	AGO
H2 + CO	4.06	1.70	1.23	1.03	0.71
CH4	3.67	23.37	21.75	15.35	10.69
C2H2	0.50	0.67	0.50	0.69	0.34
C2H4	52,45	39.65	31.74	31.02	24.85
C2H6	34.76	4.57	3.67	3.42	2.75
C3H6 + C3H4	1.15	13.28	19.85	16.21	14.28
C3H8	0.12	7.42	0.69	0.38	0.31
C4	2.24	4.03	12.90	9.54	9.61
Pyrolysis Gasoline	0.87	4.27	6.41	19.33	20.6
Pyrolysis Fuel Oil	0.16	1.11	1.26	3.01	15.78

Ethylene yield vs paraffin content

Considerations for feedstocks

- Paraffins are the best raw materials
- Lower carbon number gives higher ethylene yield
- Cracking severity influences product yield
- Steam crackers are mostly integrated into refineries therefore
 - both gaseous and liquid feeds are used,
 - profitability is very complex issue and evaluated together with refinery operation

Main and byproducts

Steam cracking processes Steam cracking at TVK

Process design considerations

Ethylene process is one of most complex systems in petrochemical industry. The following challenges have to be faced:

- Safety first
- High energy efficiency and minimum environmental emissions
- Low production costs and low investment costs
- High plant reliability
- Simple operation
- Good maintainability
- Minimum losses

Olefins production block diagram

Material and energy streams at TVK Olefin-2

Tasks of a cracking furnace

Production of ethylene and propylene by endothermic cracking reaction

- Preheating of feed and dilution steam by utilization of waste heat
- Cooling of the cracked gas to freeze chemical reactions
- Production of superheated HP steam by utilization of waste heat

Cracking furnaces

Radiant section: thermal cracking reactions (800 – 850 °C)

- Convection section: heat recovery from hot flue gas
 - Feed preheating
 - Boiler feed water preheating
 - Process steam superheating
 - HHP steam superheating
- Linear quench exchanger
 - Freezing cracking reactions in order to avoid product losses by secondary reactions (400 - 600 °C)
 - Heat recovery -> HHP steam production
- Olefin-1 and Olefin-2 represent two generations
 - O-1: 11 furnaces
 - O-2: 4 furnaces

Cracking furnace in Olefin-2

Tube arrangement in the radiant zone (Olefin-2)

Oil and water quench

Further cracked gas cooling by direct oil injection downstream the quench coolers (220 - 250 °C)

Oil Fractionation (primary fractionation) and Quench Oil Cycles

- Two quench oil cycles (Pyrolysis Fuel Oil and Pyrolysis Gas Oil) are used as heat carrier to cool the cracked gas (~100 °C) and to shift the recovered heat to consumers
- Both quench oil cycles are formed by condensing the heavy ends of the cracked gas
- Process steam generation by hot quench oil

Water Scrubbing (Water quench column)

- Cracked gas is cooled by water circulation to ambient (~30 °C) temperature to condense heavy gasoline and process (dilution) steam
- Circulating water is withdrawn from the bottom of the column and pumped to several consumers for low temperature heat recovery

Hot section: Oil fractionating and water quench column in O-2

Cracked gas compression

Cracked gas is compressed with a 5-stage centrifugal compressor

-Suction pressure: 0,5 bar (g)

-Discharge pressure: 32-36 bar (g)

The compressor is driven by an extraction/condensation steam turbine.

Process water and gasoline are condensed in the interstage coolers and knocked out in the interstage separators. Gasoline is directed to hydrogenation and separation.

Caustic Scrubbing: removal of the acid components CO2 and H2S in a 3-stage caustic scrubber

Cracked gas compressor in Olefin-2

Cold section block diagram

Cold section 1

Precooling, drying, deethanizer

- Cracked gas cooling to drying temperature
- Cracked gas drying to eliminate water content
- Cooling to -40 °C (cooling with propylene refrigerant and cold streams from the low temperature section)
- Separation of C2- and C3+ fraction (deethanizer)

C3+ processing

- C3/C4+ separation (depropanizer)
- C3 hydrogenation: conversion of methyl-acetylene and propadiene to propylene and propane
- C3H6/C3H8 separation: propylene product, propane recycle
- C4/C5 separation

Cold section 2

C2 hydrogenation

- Acetylene is selectively hydrogenated to ethylene
- Max. 1 ppm acetylene downstream the catalytic reactor

Low temperature section (cold train)

- C2- fraction is cooled with ethylene refrigerant and expanded cold streams (-145 C)
- Separation of C2 from C1 and hydrogen from methane: ethylene, ethane, and almost all methane is condensed, the remaining gas consists of a hydrogen-rich fraction

C2 splitter

- To separate **ethylene** (top product) and ethane (recycled to feed)

Safety aspects

About safety

Safety first concept has to be applied for a plant during

- design,
- construction and
- operation

in line with the industrial standards and norms

Safety is expensive – there is nothing for free

Major risk factors in olefin plants

High volume of highly flammable hydrocarbon gases and liquids
 Extremely high and low temperatures

High pressure

Corrosion

Complexity of operation

Plant safety: based on risk evaluation

Risk consideration

Risk matrix

Risk reduction

Levels of risk reduction measures

Incident remote with very serious consequences failure of safety system Failure seldom with serious consequences failure of control system, failure of plant components, severe operating failures

Process upset

frequent with minor consequences failure of control system, utility system, simple operating failure

Process variation

Emergency Response Plan Fire Brigade/First Aid

Mitigation

Mechanical System (e.g. safety valves, blow-down system) Safety Instrumented System

Prevention

Inherent Design Mechanical System Safety Instrumented System Operating Instruction

Control and Monitoring Basic Process Control System Monitoring System (process alarms)

> Process Operating condition Normal Operation Start-up/Shut-down

Example for risk reduction: selection of construction materials

Suitable material is not subject to unexpected material related failures during the calculated plant lifetime under nominal operation conditions

Calculated plant lifetime: ~15-20 Years

Nominal operation conditions:

- Specified cases of operation
- Design pressure and temperatures, fluid composition, flow velocity as specified
- Start up
- Shut down
- Site condition

Example for risk reduction: fire and explosion protection

- Proper selection of mechanical equipment to avoid leakages
- Explosion proof electric equipment and instrumentation
- Gas detection systems
- Steam curtains (e.g. for the furnaces)
- Closed blow-down system
- Safety distances between plant section
- Fire proofing insulation
- Fire water systems including hydrants and monitors
- Water spray systems

Control systems

The automation pyramid of a company

Plant control systems

Key equipment

Main groups of equipment

Furnaces

- Static equipment
 - Columns, reactors and other pressure vessels
 - Heat exchangers
 - Storage tanks
- Rotating equipment
 - Turbo machineries
 - Turbo compressors
 - Steam turbines
 - Reciprocating compressors
 - Pumps

Turbo compressors in O-2 plant

Crack gas compressor – Duty: 13,5 MW - Drive: steam turbine Ethylene compressor – Duty: 6,5 MW - Drive: steam turbine Propylene compressor – Duty: 4,5 MW - Drive: steam turbine

Crack gas compressor O-2 plant

Crack gas compressor O-2 plant

Crack gas compressor LP section

Steam turbine

Turbine driven BFW pump

Multistage BFW pump

Overview of investment and operating costs

Investment costs Basis: WE 2010 Q1 Capacity: 800 kt

	million EUR			
ISBL	704			
OSBL	352			
Other project cost	400			
Total investment	1 456			
	EUR/t Ethylene			
Specific cost	1820			

Ethylene production cost Basis: WE 2010 Q1/Q2 Capacity: 800 kt

PRODUCTION COST SUMMARY	Quantity Units	2010 Q1 2	2010 Q2				
	(per ton)	(€/ton)		Raw material less coproduct		t 🗖 Total utility costs	
Naphtha	3,230 ton	1 651,1	1 755,0				
Catalyst & Chemicals		3,6	4,0	Total direct fix or	nete	Total allocated fix cos	to
Total Raw Materials Costs		1 655	1 759,0		515		15
Fuel	0,587 ton	195,1		100% -	_		
High Pressure Steam (40 bar)	0,750 ton	24,1					
Cooling Water	0,454 kton	14,0					
Electricity	0,084 MWh	5,9					
Other (Utility)	0,145 -	0,3		80%			
Total Utility Costs		239	259,0				
Propylene	(0,516) ton	(427,5)	(496,0)	60%			
Fuel (FOE)	(0,813) ton	(270,2)	(293,0)	00%			
Benzene	(0,239) ton	(172,9)	(201,0)				
C7 - C9 cut	(0,267) ton	(139,6)	(154,0)				
Butadiene	(0,148) ton	(137,4)	(186,0)	10%			
Other	(0,391) ton	(214,9)	(227,0)	4070			
Total Co-Products		(1 363)	(1 557,0)				
Total Variable Costs		531	461,0	20%			
Total Direct Fixed Costs		38,8	38,0				
Total Allocated Fixed Costs		31,8	31,0				
Total Cash Cost		602	530.0	0%	2010 Q1	2010 Q2	