HDPE Technology

Including MDPE and LLDPE

2010

Előadó: Ádám Csaba

Content

- HDPE, MDPE and LLDPE linear polyethylenes
- Application
- History
- Catalysts
- HDPE processes
- Process control
- Process safety
- Key equipment
- Investment cost
- Cost of production

The Linear Polyethylene Family

- HDPE, MDPE, LLDPE: linear polyethylenes
- Classification by density determined by short chain branching through comonomer content

- Properties
 - Melt index 0,03 >100 g/10 min (190 C/2,16 kg)
 - Melting point 120-140 C
 - Polydispersity (TVK grades)
 - Monomodal 6-8Bimodal 10-20

Application

HDPE/MDPE

LLDPE

Application by Properties

History

- HDPE discovered in 1951 by P. Hogan and R. Banks
- Mid 1950s: commercial HDPE production in slurry process (Hoechst) and solution process (Phillips Petroleum)
- 1961: slurry loop reactor technology by Phillips Petroleum
- 1968: first gas phase process by Union Carbide
- Mid 1970s: first LLDPE process by Union Carbide
- Various processes available up to 400 kt/y capacity
- Global consumption, 2009
 - HDPE/MDPE 30 million t/y
 - LLDPE 19,2 million t/y
- TVK HDPE plants
 - 1986: Phillips slurry loop process 140 kt/y, debottlenecked to 190 kt/y
 - 2004: Mitsui slurry, cascade reactor technology 200 kt/y

Catalysts

Chromium

- Silica supported hexavalent Cr
- Activation at high temperature before use
- Cocatalyst not necessary
- Medium to broad molecular weight distribution

Ziegler(-Natta)

- MgCl₂ supported TiCl₄
- Metal alkyl cocatalyst necessary
- Narrow molecular weight distribution
- \blacksquare Preferred for bimodal products in cascade reactor technology \rightarrow very broad MWD

Metallocene (single site)

- Still developing
- Cocatalyst necessary
- Very narrow molecular weight distribution
- Bimodal capability in single reactor technology

Processes and Products

Gas Phase Process Polymerization

Gas Phase Process Additivation and Pelletizing

Gas Phase Processes Characteristics

- Catalyst: chromium, Ziegler, (metallocene)
- Fluidized bed reactor
 - **■** 70-110 C
 - □ 15-30 bar
 - Long residence time
- Swing technology: LLDPE HDPE capability
- Simple process design
- Low investment and operating cost
- Bimodal capability with two reactors

Solution Process

Solution Processes Characteristics

- Catalyst: Ziegler, (metallocene)
- Polymerisation takes place in solution
 - **30-130** bar
 - **■** 150-300 C
 - Short residence time
- Broad product range: LLDPE HDPE
- Bimodal capability with cascade reactors
- Higher investment and operating cost

ChevronPhillips Slurry Loop Process

ChevronPhillips Slurry Loop Process Characteristics

- Catalyst: chromium, Ziegler, (metallocene)
- Chromium catalyst activation
 - Fluidized bed activator
 - Heat treatment in air at 600-870 C
- Reaction in loop reactor
 - 85-105 C; 42 bar
 - 3-6 % ethylene concentration
 - Isobutane diluent
 - Heat removed by coolant in reactor jacket very good surface/volume ratio
- Flash separation
 - 10 bar; 80 C
- Degassing
 - 85 C; 0,1 bar

Phillips Process at TVK Polymerisation

Phillips Process at TVK Additivation and Pelletizing

Slurry Process CSTR- Cascade Stirred Reactor

Slurry Process — CSRT Reactor and Surroundings

Slurry Process - CSTR Process Characteristics

- Catalyst: Ziegler, (metallocene)
- Low reaction pressure and temperature
 - 6-8 bar, 70-90 C
- Reaction heat removed by
 - Overhead condensators
 - Slurry coolers
 - Reactor jacket
- Bimodal product capability
 - Different molecular weight polymer in 1st and 2nd reactor
 - Comonomer built into high molecular weight polymer
- Diluent and polymer separation by centrifuge
- Diluent cleaning for low polymer removal

Process Control

- Melt index
 - Ziegler catalyst

```
[H_2]/[Et]\uparrow MI \uparrow
```

Chromium catalyst: T, [Et], [H₂]

```
T \uparrow MI \uparrow MI \downarrow [Et] \uparrow MI \downarrow MI \uparrow
```

Density

- Molecular weight distribution
 - Catalyst type
 - Reactors operated at different parameters

Process Safety

- Risk of high volume liquid hydrocarbon
- Interlock system
 - Emergency kill to prevent reaction runaway except for CSRT
 - Action valves automatically operated by predefined process parameters to separate/blow-down equipment
- Closed blow-down system
 - Pressure safety valves, blow-down valves release to closed system, connected to
 - Flare to burn blown hydrocarbon
- Double mechanical seal on pumps in liquefied gas service
- Gas detectors
- Fire fighting system

Key Equipment

- Reactors
 - Loop with axial circulating pump
 - Gas phase
- Decanter centrifuge in CSTR only
- Extrusion line

Reactors

- Loop reactors
 - Long jacketed pipe straight vertical sections interconnected by elbows at top and bottom
 - Built in axial pump to circulate slurry
 - Good surface to volume ratio easy reaction heat removal
- Gas phase reactors
 - Vertical pressure vessel with increased top section to reduce polymer carry over
 - Long residence time
 - Reaction heat removed by external heat exchanger in recycle gas stream
 - Difficult reaction control

Loop Reactor Circulating Pump

Decanter Centrifuge

CMP Extrusion Line Arrangement

CMP Elements

Mixing in CMP

Investment Cost Basis: USGC 2008Q1; 400 kt

Technology	Solution	Gas phase	Gas phase	Slurry loop	Slurry CSTR			
Product	LLDPE	LLDPE	HDPE	HDPE	HDPE			
	million USD							
ISBL	126,4	93,8	94,7	114,1	126,8			
OSBL	115,3	102,6	102,7	113,7	116,4			
Other project cost	131,3	116,5	114,2	123,9	127,3			
Total investment	373	312,9	311,6	351,7	370,5			
Specific investment,								
USD/t	933	782	779	879	926			

Cost of Production Basis: USGC 2008Q1; 400 kt

		N. I. Haller			
Technology	Solution	Gas phase	Gas phase	Slurry loop	Slurry CSTR
Product	LLDPE	LLDPE	HDPE	HDPE	HDPE
			USD/t		
Ethylene	1223	1222	1326	1324	1334
Comonomer	176	159	25	24	25
Catalysts&Chemicals	47	14	27	42	22
Additives	13	15	18	18	18
Total raw materials	1459	1410	1396	1408	1399
Power	15	22	25	30	26
Steam	16	2	2	6	13
Other utilities	8	10	6	11	8
Total utilities	39	34	33	47	47
Variable cost	1498	1444	1429	1455	1446
Direct cash cost	14	12	12	14	14
Allocated cash cost	17	15	15	16	17
Total fixed cost	31	27	27	30	31
Total cash cost	1529	1471	1456	1485	1477

Appendix: Typical Mechanical Seal

Appendix: Blow Moulding

Appendix: Pipe Extrusion

