PRODUCT CATALOGUE
HIGH DENSITY POLYETHYLENE
INTRODUCTION

Along with petrochemical units of SLOVNAFT, a.s. in Bratislava, TVK Plc. is composing the Petrochemical business in the MOL Downstream Division, which holds leading position in Central Europe’s petrochemical sector and is one of the ten largest polymer producers in Europe.

We can highly lean on the refinery integration benefits in the MOL Downstream Division: the secured feedstock supply, the robust financial background and strong position in the regional markets, together with the high quality products of the optimized production capacities. We keep operational reliability up by regular maintenance programs, carried out at our production units.

Our prime objective is maintaining our petrochemical leadership in the Central and Eastern European polymer markets where the demand growth perspectives exceeds Western European figures.

Our advantageous location in the Central European markets and our competitive portfolio of high quality polyolefin products - optimized in line with customer requirements - provide a firm basis for exploiting the opportunities arising from the surge of demand for polymers in Central and Eastern Europe.

Corporate History

1999  MOL acquired minority stake in TVK Plc.
2001  MOL became majority owner in TVK with a stake over 33.34%
2004  MOL acquired majority stake in TVK (44.31%) and in SLOVNAFT (98.4%)
       MOL Petrochemicals Division established: the product range has been streamlined and the sales channels integrated in order to provide competitive edge to our customers on their markets
2011  Petrochemical business integrated into the Downstream Division of MOL Group

TIPELIN is the registered trade mark for medium and high density polyethylene grades manufactured by TVK Plc.

TVK unimodal medium and high density TIPELIN grades (MDPE and HDPE) are produced by continuous suspension polymerization using low pressure catalytic process under licence of Phillips Petroleum Co. The density range of co-polymers produced with hexene-1 co-monomer grades is 0.934 - 0.961 g/cm³.

The bimodal high density TIPELIN types are produced by CX Process under licence of Mitsui. This slurry phase polymerization employing a super-high-activity catalyst and a two-reactor system. The density range of co-polymer grades produced with butene-1 co-monomer is 0.948-0.959 g/cm³.
• Molecular and crystal structure, density

Polyethylene macromolecules and their co-polymers build chains consisting of thousands of -CH₂ units. Depending upon polymerisation, this chain develops different branches (Fig. 1). Owing to its molecular structure with branches of chain length, LDPE is referred to as branched polyethylene. In contrast with this, medium and high density grades have only short branches on their chains and are referred to as linear polyethylene. LDPE has long chain branches, which themselves are branched as well. These products are manufactured in a high pressure process (>1000 bar). Linear polyethylene is produced in a low pressure process (by Phillips grades about 40 bar and by Mitsui grades about 10 bar). Hexene-1 (Phillips grades) and butene-1 (Mitsui grades) comonomer built in the chain of these polyethylene grades produces side chains.

The number of side chains is proportional to the amount of co-monomer built in the chain. As a result of the built-in co-monomer, the density and the degree of crystallinity will decrease. Polyethylene density (0.910-0.970 g/cm³) and molecular weight depend on polymerisation circumstances to some extent. Melt flow rate and density are characteristics indicative of the polyethylene grade. Higher density is associated with a higher crystallisation ratio and a lower number of branches.

Polyethylene is a partially crystalline polymer. The relationship between crystallisation ratio and density of HDPE is shown in Fig. 2. The proportion of crystalline matter or the density decides the polyethylene’s melting characteristic. The melting point rises with the increase in crystallinity and density. The melting point varies between the melting point of LDPE (ca. 110 °C) and that of HDPE (ca. 128 °C).

• Molecular weight, melt flow rate, melt viscosity and flow characteristics

Chain length, or the average molecular weight is one of the important characteristics indicative of the degree of linkage. Changes in the molecular weight will definitely change melt viscosity, highly effecting on the processing properties. A high molecular weight polymer has a high melt viscosity. To measure flow properties, a parameter, melt flow rate is used according to ISO 1133. High melt flow rate means easy flowing and low molecular weight. Melt flow rate is defined by a one-point method, a test that can be performed quite easily under laboratory circumstances. It is important, however, that the molecular weights, melt flow rates and flow characteristics of identical polyethylene grades manufactured in different processes may differ even though they have the same melt flow rate.
• Molecular weight distribution

Polyethylene consists of molecules of different chain lengths, giving different molecular weights. This is clearly shown by the diagram demonstrating the frequencies of various molecular weight. Molecular weight distribution influences both processing and end product properties. For example, a narrow molecular weight distribution is needed for the injection moulding of resins if the moulded parts are to be free from all distortion and internal stresses which might compromise their environmental stress cracking resistance (ESCR).

At the same time, a high molecular weight polyethylene with a wider molecular weight distribution is more suitable for blowing processes to manufacture pipes and films. It should be remembered, however, that the low and medium molecular weight fractions account for easy processing. The high molecular weight fraction gives good mechanical properties (impact strength, creep and warp resistance and ESCR).

The narrower the molecular weight distribution
- The lower the internal stresses
- The higher the stretchability when molten

The most important property of HDPE is its mechanical strength with easy processing capability, and this can be realized through bimodal high molecular weight HDPE. The low molecular weight component provides good processability, while the high molecular weight component gives excellent mechanical strength.

OTHER PROPERTIES

• Shrinkage

The shrinkage of finished products manufactured from HDPE takes place in the crystallization phase. The extent of crystallisation depends on the processing parameters (temperature, pressure, throughput, thickness, cooling speed, etc.), but molecular structure (molecular weight and weight distribution) is a further factor having an effect on crystallisation. Shrinkage accounts 3-4% in pipe diameters. Shrinkage can be max. 5% in fittings made from pipe grades. Shrinkage can be exactly determined only after 24 hours following injection moulding, because after crystallisation and the compensation of the generated internal stresses will result in further dimensional changes in the finished products. The extent of after shrinkage is time and temperature dependent. After shrinkage time, when shrinkage can reach 1% max., can be reduced by increased storage temperatures.

• Weather resistance

HDPE grades have a good resistance to light in the visible spectrum. However, when stored in the open air, they can get damaged by the combined effects of atmospheric oxygen and UV radiation. As a result, their durability and tensile strength lessen, and they may discolour. The useful life of polyethylene can be increased by two or four times with a UV stabiliser added to the blend. The great number of available UV stabilisers allows manufacturers to select the right grade to make a product most suitable for the weather conditions, end product and the environment of application. Special carbon blacks, the best UV stabilisers so far, can extend the useful lives of the products by 10-15 times when added in amounts of 2-3%. Pigments also can improve UV resistance, although, these additives may cause some undesirable side effects, as well.

APPLICATION

The wide range of grades and the careful selection of characteristics of the individual grades allow various applications including:

Blown film grades
for heavy duty bags, industrial bags, shopping bags, garbage bags and packaging films for medicines and foods;

Blow moulding grades
to manufacture household plastic products, bottles and cans for foods including oils, soft drink extracts, dairy products and large capacity barrels for household or industrial chemicals, corrugated pipes;

Pipe grades
corrugated and protective pipes, steel pipe coating;

Sheet extrusion grades
for sheets and thermoformed sheets.
**GRADES PRODUCED BY PHILLIPS TECHNOLOGY:**

**TIPELIN** MEDIUM AND HIGH DENSITY POLYETHYLENE GRADES (MDPE AND HDPE) ARE IDENTIFIED BY A CODE SYSTEM CONSISTING OF TWO LETTERS AND FIVE DIGITS.

- The first letter is for the application of the polymer:
  - **F** = Film
  - **B** = Blow moulding, corrugated pipes, sheets
- The second letter indicates the melt flow rate (MFR) range in g/10 min at 190 °C and 2.16 kg:
  - **S** < 0.2
  - **A** = 0.2-0.5
  - **B** = 0.5-1.0
- The first and second digits are identical with the second and the third decimals of the number indicating nominal density.
- The third digit is an internal plant code.
- The fourth and fifth digits identify the additive system in the polymer.

**Example:**

- **FS 383 - 03**

**GRADES PRODUCED BY MITSUI TECHNOLOGY:**

**TIPELIN** HIGH DENSITY POLYETHYLENE GRADES ARE IDENTIFIED BY A CODE SYSTEM CONSISTING OF FOUR DIGITS AND ONE LETTER.

- The first digit indicates the melt flow rate (MFR) range in g/10 min at 190 °C and 2.16 kg:
  - **6** = 0.1-0.9
  - **7** = 0.05-0.10
  - **8** < 0.05
- The second, third and fourth digit are internal code.
- Letters at the end of the grade name show main application of the grade:
  - **B** = Blow moulding
  - **F** = Film
  - **M** = Pipe extrusion
  - **S** = Sheet extrusion

**Example:**

- **7000F**
<table>
<thead>
<tr>
<th>Grade/Parameter</th>
<th>Melt Mass-Flow Rate (MFR)</th>
<th>Density 23°C</th>
<th>% Tensile Strength at Yield</th>
<th>% Tensile Strength at Break (MD/ TD)</th>
<th>% Elongation at Break (MD/ TD)</th>
<th>Notched Izod Impact</th>
<th>Shore D Hardness</th>
<th>ESCR TD 0 B Method</th>
<th>OIT 200°C</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>HIGH DENSITY POLYETHYLENE PIPE AND SHEET BLOW MOULDING GRADES</strong></td>
<td></td>
</tr>
<tr>
<td>FS 340-03 (1)</td>
<td>0.015 = 0.045 kg/10 min</td>
<td>ISO 1183-1</td>
<td>ISO 1183-2</td>
<td>ISO 527-3</td>
<td>ISO 527-3</td>
<td>ISO 527-3</td>
<td>ISO 527-3</td>
<td>ISO 527-3</td>
<td>ISO 527-3</td>
<td></td>
</tr>
<tr>
<td>FA 381-10 (1)</td>
<td>0.045 = 0.135 kg/10 min</td>
<td>935</td>
<td>22/19 (7)</td>
<td>-</td>
<td>51/44 (7)</td>
<td>700/790 (7)</td>
<td>48/390 (7)</td>
<td>100 (7)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>FS 383-03 (1)</td>
<td>0.045 = 0.135 kg/10 min</td>
<td>937</td>
<td>20/17 (7)</td>
<td>-</td>
<td>47/42 (7)</td>
<td>710/840 (7)</td>
<td>49/380 (7)</td>
<td>95 (7)</td>
<td>900</td>
<td>-</td>
</tr>
<tr>
<td>FS 471-02 (1)</td>
<td>0.045 = 0.135 kg/10 min</td>
<td>946</td>
<td>24/21 (7)</td>
<td>-</td>
<td>53/45 (7)</td>
<td>700/840 (7)</td>
<td>25/290 (7)</td>
<td>78 (7)</td>
<td>1190</td>
<td>-</td>
</tr>
<tr>
<td>FB 472-02 (1)</td>
<td>0.045 = 0.135 kg/10 min</td>
<td>947</td>
<td>22/21 (7)</td>
<td>-</td>
<td>47/41 (7)</td>
<td>740/960 (7)</td>
<td>29/290 (7)</td>
<td>42 (7)</td>
<td>1120</td>
<td>-</td>
</tr>
<tr>
<td><strong>HIGH DENSITY POLYETHYLENE BLOW INCLUDING GRADES</strong></td>
<td></td>
</tr>
<tr>
<td>BS 501-17 (1)</td>
<td>0.045 = 0.135 kg/10 min</td>
<td>950</td>
<td>26 (8)</td>
<td>-</td>
<td>32 (8)</td>
<td>1000 (8)</td>
<td>-</td>
<td>-</td>
<td>1400</td>
<td>15</td>
</tr>
<tr>
<td>BS 520-14 (1)</td>
<td>0.045 = 0.135 kg/10 min</td>
<td>952</td>
<td>27 (8)</td>
<td>-</td>
<td>30 (8)</td>
<td>1290 (8)</td>
<td>-</td>
<td>-</td>
<td>1490</td>
<td>29</td>
</tr>
<tr>
<td>BA 550-13 (1)</td>
<td>0.045 = 0.135 kg/10 min</td>
<td>954</td>
<td>29 (8)</td>
<td>-</td>
<td>-</td>
<td>1000 (8)</td>
<td>-</td>
<td>-</td>
<td>1590</td>
<td>15</td>
</tr>
<tr>
<td>BB 620-17 (1)</td>
<td>0.045 = 0.135 kg/10 min</td>
<td>962</td>
<td>32 (8)</td>
<td>10</td>
<td>-</td>
<td>1000 (8)</td>
<td>-</td>
<td>-</td>
<td>1900</td>
<td>14</td>
</tr>
<tr>
<td><strong>LOW DENSITY POLYETHYLENE BLOW INCLUDING GRADES</strong></td>
<td></td>
</tr>
<tr>
<td>6000B (1)</td>
<td>0.045 = 0.135 kg/10 min</td>
<td>958</td>
<td>32 (8)</td>
<td>9</td>
<td>-</td>
<td>1000 (8)</td>
<td>-</td>
<td>-</td>
<td>1700</td>
<td>9</td>
</tr>
<tr>
<td>6010B (1)</td>
<td>0.045 = 0.135 kg/10 min</td>
<td>958</td>
<td>30 (8)</td>
<td>10</td>
<td>-</td>
<td>1300 (8)</td>
<td>-</td>
<td>-</td>
<td>1700</td>
<td>9</td>
</tr>
<tr>
<td>6300B (1)</td>
<td>0.045 = 0.135 kg/10 min</td>
<td>954</td>
<td>32 (8)</td>
<td>10</td>
<td>-</td>
<td>1005 (8)</td>
<td>-</td>
<td>-</td>
<td>1550</td>
<td>9</td>
</tr>
<tr>
<td>7300B (1)</td>
<td>0.045 = 0.135 kg/10 min</td>
<td>955</td>
<td>37 (8)</td>
<td>10</td>
<td>28 (8)</td>
<td>1040 (8)</td>
<td>-</td>
<td>-</td>
<td>1600</td>
<td>18</td>
</tr>
<tr>
<td>8200B (1)</td>
<td>0.045 = 0.135 kg/10 min</td>
<td>952</td>
<td>28 (8)</td>
<td>12</td>
<td>37 (8)</td>
<td>1300</td>
<td>-</td>
<td>-</td>
<td>1500</td>
<td>31</td>
</tr>
<tr>
<td>7700M (1)</td>
<td>0.045 = 0.135 kg/10 min</td>
<td>948</td>
<td>40 (8)</td>
<td>12</td>
<td>30 (8)</td>
<td>1320 (8)</td>
<td>-</td>
<td>-</td>
<td>1300</td>
<td>23</td>
</tr>
<tr>
<td>7111S (1)</td>
<td>0.045 = 0.135 kg/10 min</td>
<td>949</td>
<td>25 (8)</td>
<td>11</td>
<td>30 (8)</td>
<td>1215 (8)</td>
<td>-</td>
<td>-</td>
<td>1350</td>
<td>19</td>
</tr>
</tbody>
</table>

Notes: Typical properties, not to be used as specification.

(1) MFR at 190°C and 2.16 kg
(2) MFR at 190°C and 5 kg
(3) MFR at 190°C and 21.6 kg
(4) Values have been measured on standard pressed specimens (ISO 293) conditioned at room temperature (ISO 291)
(5) The thickness of the film: 0.025 mm for the mechanical measurement (MD/TD: MD = machine direction, TD = trans direction)
(6) The thickness of the film: 0.013 mm for the mechanical measurement (MD/TD: MD = machine direction, TD = trans direction)
(7) Values have been measured in 100% Igepal CO-630 on standard pressed specimens (ISO 293) conditioned at room temperature (ISO 291)
(8) Values have been measured in 10% Isopropyl CO-690 on standard pressed specimens (ISO 293) conditioned at room temperature (ISO 291)
PROCESSING CONDITIONS
of TIPERLIN MDPE and HDPE grades

Film manufacturing
Considering their characteristics, TIPERLIN film grades are medium and high density polyethylenes with a typically wide molecular weight distribution. To manufacture these grades an HDPE production unit with a 0.7-1.2 mm die gap and melt temperatures of 200-220 °C are recommended. To produce optimum mechanical properties a high blow up ratio (minimum 4:1) should be applied. Generally the frost line height is 5-8 times the die diameter. TIPERLIN FS 340-03, FS 383-03, FA 381-10 and FB 472-02 may be processed on machines designed for LDPE as LDPE, LLDPE or other blends containing HDPE. Depending on the extruder design and processing conditions, the thickness range can be 0.007-0.200 mm.

Pipes and sheet extrusion
Pipes and sheets can be manufactured from a TIPERLIN grades in a profile extrusion process. For the extrusion of TIPERLIN profiles, a screw of at least 20 D, shorter compression zone (1-3 D) and a 2-2.5 compression ratio should be applied. The constant pitch of the screw should be equal with or less than the diameter. Recommended processing temperatures are 170-220 °C for extrusion.

Blow moulding
TIPERLIN blow moulding grades are high density polyethylenes with typically low MFR and a wide molecular weight distribution. TIPERLIN blow moulding grades process well on extruders whose screw is not less 20 D, constant pitch is equivalent with or less than diameter, compression zone is shorter (1-2 D) and where compression ratio is 2.5-3. Recommended melt temperatures are 180-220 °C.

PHYSICAL PROPERTIES*

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Method</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal expansion</td>
<td>ASTM D696</td>
<td>12.6 x 10^-6</td>
<td>°C^-1</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>ISO 8302</td>
<td>0.48</td>
<td>W/(m.K)</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>ISO 8302</td>
<td>0.2</td>
<td>W/(m.K)</td>
</tr>
<tr>
<td>Electric resistivity</td>
<td>DIN IEC 93</td>
<td>10^10 - 10^12</td>
<td>Ohm.m</td>
</tr>
<tr>
<td>Dielectric constant</td>
<td>ASTM D150</td>
<td>2.4</td>
<td>-</td>
</tr>
<tr>
<td>Specific heat</td>
<td>ASTM C351</td>
<td>1800 - 2700</td>
<td>J/kg.K</td>
</tr>
<tr>
<td>Melting temperature</td>
<td>Internal method (DSC)</td>
<td>125 - 135</td>
<td>°C</td>
</tr>
<tr>
<td>Glass transitional</td>
<td>ASTM E1356</td>
<td>80</td>
<td>-</td>
</tr>
<tr>
<td>Breakdown potential</td>
<td>IEC 243-1</td>
<td>17.7 - 19.7</td>
<td>kV/mm</td>
</tr>
<tr>
<td>Dielectric loss factor</td>
<td>ASTM D150</td>
<td>0.0005 - 0.0008</td>
<td></td>
</tr>
<tr>
<td>Friction coefficient</td>
<td>ASTM D1894</td>
<td>0.25 - 0.3</td>
<td></td>
</tr>
<tr>
<td>Refraction index</td>
<td>ISO 489</td>
<td>1.52 - 1.53</td>
<td></td>
</tr>
<tr>
<td>Shrinkage</td>
<td>ISO 294-4</td>
<td>2.4 - 4.0</td>
<td>%</td>
</tr>
<tr>
<td>Water absorption</td>
<td>ASTM D570</td>
<td>0.01 - 0.015</td>
<td>%</td>
</tr>
<tr>
<td>Fatigue</td>
<td>ASTM D673</td>
<td>18 - 20</td>
<td>MPa</td>
</tr>
</tbody>
</table>

* these physical values are based on literature data. The values can change with different types, these values are not specified and not guaranteed
STORAGE AND HANDLING

Pellets are packed in 25 kg PE-LD bags and transported on stretch-wrapped pallets at load of polymer 1375 kg. We use adhesive between the bags in order to avoid their slipping. Pay attention to this fact during the removing of the bags from the pallets. The preferred method is to lift the bag at first without rotation. Heat treated pallets are available as well. Transportation in a road silo or rail silo is also available. For more detailed information please contact SLOVNAFT and TVK sales representative.

Since polyethylene is a combustible substance, the fire safety rules applicable for combustible materials in warehouses and store rooms should be observed.

If polymer is stored in conditions of high humidity and fluctuating temperatures, then atmospheric moisture can condense inside the packing. If it happened, it is recommended the pellets to be dried before use. During the storage polyethylene should not be exposed to UV radiation and temperatures above 40 °C. Producer does not take responsibility for any damages caused by adverse storage.

REACH STATEMENT

Polymers are exempt of REACH registration. However their raw materials which mean monomers, catalysts and relevant additives have been registered. TVK Plc. is committed to fully respect this legislation and will only use REACH compliant raw materials. At this point in time HDPE TIPELIN does not contain any substances specifically identified as SVHC at greater level than 0.1%.

APPLICATION FOR FOODS

Most TIPELIN grade satisfy the regulations applied by the European countries (EEC). Because several European countries apply restrictive regulations for the allowed migration values of additives in packaging material in contact with food, it is recommended that customers contact TVK for some special information or product licenses for food industry.

SAFETY

Under normal circumstances, polyethylene is not regarded as hazardous material when in contact with the skin or when inhaled. However, any contact with the molten polymer or the inhalation of the released gases should be avoided in processing. It is recommended to install exhaust units over processing machines and to secure good ventilation of the place. For further information see Material Safety Data Sheet.

RECYCLING

Polyethylene resins are suitable for recycling using modern recycling methods. In-house production waste should be kept clean to facilitate direct recycling.

DISCLAIMER

The information provided in this publication has been compiled to the best of our present knowledge. However, in view of the various applications of polyethylene resins and the equipment used, the processing conditions may differ.

The recommendations and data herein are to be construed as informatory only and do not relieve users from carrying out their own tests and experiments prior to processing in order to check suitability for a specific use. It is the responsibility of those to whom we supply our products to ensure that any proprietary rights and existing laws and legislation are observed. Our products are under continuous development, therefore we reserve the right to change the information presented in this brochure at our own discretion.

The REACH statement herein does not constitute legal advice. The REACH statement is provided for informational purpose only.